The lab runs a number of projects, centered around three themes, outlined below. Many of our techniques—brain imaging, stimulation, behavioural measurements, modelling, and electrophysiology—are shared across the themes.

Tools and Fundamentals of Neuroimaging

The projects in this theme investigate physiological and informative components of functional MRI (fMRI) signals, develop and validate advanced MRI hardware for high-resolution imaging or simultaneous imaging and stimulation, and develop tools for advanced imaging, analysis of images, and modelling.

General background

Functional Magnetic Resonance Imaging has been the work horse for mapping human brain functions in the past decades. In an example of the classical approach, subjects are shown are shown a cloud of randomly moving dots on a screen for 20 seconds (condition A), then a similar cloud of dots that are now coherently moving toward the same direction (condition B). Condition B evokes two psychological phenomena, the perception of moving dots or elements and the perception of coherent or global movement, whereas Condition A evokes only on of the two concepts evoked in condition B, the perception of moving elements. Under the assumption of linear summation, subtracting condition A from condition B should cancel the effects of moving elements and allow the experimenter to specifically study global motion. For mapping the brain areas responsible for the perception of global motion, the experimenter will, for each fMRI voxels (a pixel in 3D), subtract the signal acquired in condition B from the signal acquired in condition A and test whether this difference is significant. Results are then overlaid on top of the image of the brain, yielding the colorful pictures of fMRI papers have accustomed us to, with blobs indicating the “mapped” brain areas.

Although this approach was extremely useful for mapping the brain, i.e. the identification which brain area does what, advances in the achievable resolution and sensitivity of MRI and the development of analysis methods open the way for the more interesting question of how does the brain do what it does? Examples of questions addressed around this center theme in the lab... [direct to other sections here] However, the greater MRI capabilities come with their lot of challenges. The indirect relation between neural activity and measured fMRI signal did not matter much when fMRI resolution allowed only to study large swats (>3mm) of the cortex, but understanding this relation becomes crucial for studying the small-scale processes now accessible with modern MRI scanner. Next sections highlight our approaches and contributions to technological advances in MRI (subsection title) and to define the link between neural information processing and fMRI signals (Spatio-Temporal Properties / Neural and Vascular Origins of fMRI Signals section).

Physiology & Information Content of fMRI Signals

Seminal work on the neural determinants of the fMRI signals both related synaptic and spiking activity to changes in fMRI signals (Logothetis). Upon increased levels of neural activity, multiple signaling pathways induces blood vessels dilation, triggering a localized vascular response involving increased blood flow and volume in the piece of brain involved, in order to meet the increased metabolic demands. In the paradigmatic case of shifting from a resting (no stimulation) to a high (active) level of neural activity, the increase in blood supply greatly exceeds the increase in oxygen supply. The consequent increase in oxygenation level changes the magnetic properties of the tissue and give rise to the most commonly used fMRI signal, the blood-oxygenation-level-dependent (BOLD) signal.

Temporally, the slow nature of the BOLD response owes to its vascular origin – the vascular response is delayed and sluggish relative to triggering neural. There is however animal (Devor) and human (Farivar) evidences that the shape of the response, the hemodynamic response function, might not be completely explained by vascular dynamics. Both optogenetic stimulation of specific sub-population of neurons (Devor) and modulating the excitation/inhibition ratio of a neural response with targeted visual stimuli (Farivar) affected the shape of the hemodynamic response. A main interest in our lab is to establish methodologies for using these differences in temporal shape in order to move from measures of the global level of neural activity within a voxel (from the amplitude of the response) to measures of the qualitative nature of a neural activation like its excitation/inhibition balance (from the shape of the response).

Spatially, patterns of BOLD activation, even at very high resolution, do not perfectly overlap with the pattern of neural activity, being heavily biased toward nearby penetrating and pial veins. That is not to say that spatial patterns of BOLD do not carry information about the underlying spatial pattern of neural activity, which itself can carry important information on neural information processing, the real interesting thing we want to learn about. A privileged approach in our lab to circumvent this issue is the move away from the precise millimeter-range localization of neural processes and rather focus on spatial patterns of BOLD relevant to information processing. This is the decoding approach to fMRI, where the capacity of the multi-voxel pattern of BOLD signal within a brain region to predict features of a visual stimuli is taken as evidence for the processing of that feature in that brain area.

The spatial and temporal characteristics of a BOLD response are intrinsically interrelated through the complex dynamics of adaptive blood flow in the vascular network. A series of experiments in our lab has shown spatio-temporal properties of BOLD signal quite difficult to study with standard approaches. A cardinal findings in our lab is that as the BOLD response unfold through time and space in the visual cortex, the neurally-relevant component (capacity to predict stimulus feature from the spatial pattern) of the response is delayed by an extra 1-2 seconds relative to the largely non-specific (to stimulus feature) BOLD response.

MRI RF Coils and Optimization

Through novel hardware designs, we aim to improve on four key aspects of magnetic resonance imaging (MRI): accuracy, quality, comfort, and speed. Higher accuracy and quality of images leads to more accurate and precise findings in both research and clinical settings. For instance, higher resolution images with minimized noise and heightened quality may mean earlier detection of illness, leading to higher life expectancy and quality of life; or more precise conclusions to research questions, fostering a better understanding of our brains, leading to more accurate therapeutic techniques. The comfort of a patient and the length of time spent in the scanner can greatly improve the happiness of the patient while also minimizing error introduced by movement or premature termination of scans. From a research perspective, subject happiness, again, lends to improved accuracy and quality of results, as well as higher temporal resolution of brain activity scans (functional scans).

We accomplish these goals by designing and testing radio-frequency coils, a type of specialized antenna. They offer improved accuracy and quality through better signal-to-noise ratio, higher patient comfort through more form fitting and flexible assemblies, and higher speed through large coil arrays.

Currently, our projects include combining transcranial magnetic stimulation (TMS), a method to stimulate precise areas of the brain, with functional imaging of subjects performing a visual task to investigate the instantaneous effects of TMS and how these effects permeate across the brain. A large, flexible coil array, featuring 128-channels, is currently in development and will provide leading-edge image quality and accuracy, while improving patient comfort through a flexible, size-adjustable design.

We hope to provide insight, tools, and designs that will motivate others to contribute and grow the field of diagnostic imaging hardware and techniques.

Analysis and Modelling of Structural and Functional MRI signals

Anatomical structures among experimental subjects are very different. However, neuroscientists make inference about the population based on the confounded fact that our experimental subjects represent human population. Previously, researches addressed the problem by aligning anatomical landmarks of the cortical surface and bring subject to a common template. This approach still leaves gaps to be bridged that anatomical landmarks are not perfect reflections of functional brain area variety between different people. Recently, researches have developed ways to circumvent the inconsistency of anatomical structure to functional areas. One of them is functional hyper-alignment, which brings subjects to a same template based on functional patterns. Representational similarity analysis (RSA) also helps to eliminate this inconsistency by making it possible of comparisons in different multidimensional spaces. In our lab, we are interested in this framework of moving from representing anatomical template to functional template of the group. We are moving towards models that could provide insights to the neuroimaging society.

Brain Representation and Processing of Vision

People navigate complex environments, making sense of objects, scenes, and their constancy despite changing illumination, point of view, etc. How does the brain do it? We’re trying to understand aspects of these as they pertain to the Natural 3-D world by studying how depth cues serve to represent objects, how naturalistic scenes are represented, and how some of these representations arise from early stages in visual processing.

Brain Signals During Vivid, Natural Movie Viewing

Representation of Objects from 3-D depth cues

Human can recognize object regardless of variant visual appearance (color, shape, texture, etc.) and regardless of retinal image variation (size, position, orientation, etc.). For example, if we see a mug far away or really close by, rotated or upside-down, made with porcelain or plastic, been white or green, we can still say it’s a mug, even though its image representation was completely different in our eyes. This property is called invariance of object recognition. Two previous papers in our lab addressing the behavior aspect of invariant face recognition demonstrate that face recognition is depth cue invariant (Akhavein & Farivar, 2017; Dehmoobadsharifabadi & Farivar, 2016).

One way to make inference about the brain is to discover differences in brain activity when subjects are watching different objects. The basic assumption is that if the activity in one brain area can tell which object the subject is watching invariantly, this brain area must bear information about the objects, and thus participate in the object recognition. The heated debate arises around what aspects of brain activity differs when people are watching different objects. Activity amplitude (univariate activity) is shown to related to object recognition. More recent ideas tend to attract attentions that the activity patterns (multivariate) of certain patch of the brain is more related to invariant object recognition. In our lab, we take the multivariate pattern approach and investigate depth cue invariance using MEG and fMRI (Akhavein & Farivar, 2018, in press). We extent the idea of current multivariate activity pattern to a new level by postulating that representations of invariant object recognition should not be confined by local activity pattern. The invariance of object recognition should include the property of brain networks. Working progress in the lab include investigating the object representations in the brain at network level.

Akhavein, H., & Farivar, R. (2017). Gaze behavior during 3-D face identification is depth cue invariant. Journal of Vision, 17(2):9, 1–12.

Dehmoobadsharifabadi, A., & Farivar, R. (2016). Are face representations depth cue invariant? Journal of Vision, 16(8):6. doi: 10.1167/16.8.6.

Early Visual Representations

Disease and Recovery Models

We actively seek to contribute to the study of disease and recovery and to learn from these interactions to better understand fundamental aspects of cortical processing. We currently study three different diseases, and seek to understand recovery mechanisms in these as well.

Amblyopia

Concussions (Traumatic Brain Injury)

Alzheimer’s